在日常的学习中,很多人都经常追着老师们要知识点吧,知识点也可以通俗的理解为重要的内容。为了帮助大家掌握重要知识点,以下是小编精心整理的人教版一年级数学知识点总结,仅供参考,欢迎大家阅读。一年级数学知识点总结 1一
人教版一年级数学知识点总结
在日常的学习中,很多人都经常追着老师们要知识点吧,知识点也可以通俗的理解为重要的内容。为了帮助大家掌握重要知识点,以下是小编精心整理的人教版一年级数学知识点总结,仅供参考,欢迎大家阅读。
1.让学生体验上下的位置关系;定物体上下的位置和顺序,并能用自己的语言表达;
2.比较熟练地口算20以内的退位减法;使学生初步学会用加法和减法解决简单的问题;
3.使学生知道长方形、正方形的形状和边的特点;
4.通过折一折、摆一摆、剪一剪、拼一拼,加深对长方形和正方形的认识,能辨别、区分这两种图形;
5.认识计数单位“一”和“十”,能够熟练地一个一个地和一十一十地数出数量在100以内的物体个数,懂得100以内的数是由几个“十”和几个“一”组成的,掌握100以内数的顺序,会比较100以内数的大小;
6.能够熟练地口算整十数加一位数和相应的减法。
1.能确定物体上下的位置和顺序,并能用自己的语文试表述;
2.让学生体验上下位置的相对性;
3.通过操作让学生明白长方形和正方形各自的特点;
4.理解算理,掌握自己喜欢的计算方法,并能够正确熟练地进行计算;
5.100以内数的读法和写法;
6.数100以内数,特别是数到几十九、下一个整十数应该数几十比较困难;
7.了解和掌握个位、十位的数位的概念。理解个位、十位上的数所表示的意义,能够正确地、熟练地读、写100以内的数。
1.位置:所在或所占的地方,有上下、前后、左右之分。
2.上:位置方位名词,例如:汽车在马路的上面。
3.下:位置方位名词,例如:船在桥的`下面。
4.前:位置方位名词。例如:张三在李四的前排,那么可以说张三在李四的前面。
5.后:位置方位名词。例如:李四在张三的后排,那么可以说李四在张三的后面。
6.退位减:减法运算中必须向高位借位的减法运算。
7.20以内的退位减法:20以内的数字之间的退位减法。例如:12-9=3。
9.图形的拼组(作风车):
8.数一数
9.读数:24读作“二十四”;169读作“一百六十九”。
10.比较数的大小
先比较高数位的数学,再按照数位的高低依次比较。
例如:39和145比较大小,39百位数字为0,145百位数字为1,0小于1,所以39小于145。
准备课
1、数一数
数数:数数时,按一定的顺序数,从1开始,数到最后一个物体所对应的那个数,即最后数到几,就是这种物体的总个数。
2、比多少
同样多:当两种物体一一对应后,都没有剩余时,就说这两种物体的数量同样多。
比多少:当两种物体一一对应后,其中一种物体有剩余,有剩余的那种物体多,没有剩余的那种物体少。
比较两种物体的多或少时,可以用一一对应的方法。
位置
1、认识上、下
体会上、下的含义:从两个物体的位置理解:上是指在高处的物体,下是指在低处的物体。
2、认识前、后
体会前、后的含义:一般指面对的方向就是前,背对的方向就是后。
同一物体,相对于不同的参照物,前后位置关系也会发生变化。
从而得出:确定两个以上物体的前后位置关系时,要找准参照物,选择的参照物不同,相对的前后位置关系也会发生变化。
3、认识左、右
以自己的左手、右手所在的位置为标准,确定左边和右边。右手所在的一边为右边,左手所在的一边为左边。
要点提示:在确定左右时,除特殊要求,一般以观察者的左右为准。
1-5的认识和加减法
一、1--5的认识
1、1—5各数的含义:每个数都可以表示不同物体的数量。有几个物体就用几来表示。
2、1—5各数的数序
从前往后数:1、2、3、4、5.
从后往前数:5、4、3、2、1.
3、1—5各数的写法:根据每个数字的形状,按数字在田字格中的位置,认真、工整地进行书写。
二、比大小
1、前面的数等于后面的数,用“=”表示,即3=3,读作3等于3。前面的数大于后面的数,用“>”表示,即3>2,读作3大于2。前面的数小于后面的数,用“<”表示,即3<4,读作3小于4。
2、填“>”或“<”时,开口对大数,尖角对小数。
三、第几
1、确定物体的排列顺序时,先确定数数的方向,然后从1开始点数,数到几,它的顺序就是“第几”。第几指的是其中的某一个。
2、区分“几个”和“第几”
“几个”表示物体的多少,而“第几”只表示其中的一个物体。
四、分与合
数的组成:一个数(1除外)分成几和几,先把这个数分成1和几,依次分到几和1为止。例如:5的组成有1和4,2和3,3和2,4和1.
把一个数分成几和几时,要有序地进行分解,防止重复或遗漏。
五、加法
1、加法的含义:把两部分合在一起,求一共有多少,用加法计算。
2、加法的计算方法:计算5以内数的加法,可以采用点数、接着数、数的组成等方法。其中用数的组成计算是最常用的方法。
六、减法
1、减法的含义:从总数里去掉(减掉)一部分,求还剩多少用减法计算。
2、减法的计算方法:计算减法时,可以用倒着数、数的分成、想加算减的方法来计算。
七、0
1、0的意义:0表示一个物体也没有,也表示起点。
2、0的读法:0读作:零
3、0的写法:写0时,要从上到下,从左到右,起笔处和收笔处要相连,并且要写圆滑,不能有棱角。
4、0的加、减法:任何数与0相加都得这个数,任何数与0相减都得这个数,相同的两个数相减等于0.
如:0+8=89-0=94-4=0
认识图形
1、长方体的特征:长长方方的,有6个平平的面,面有大有小。
如图:
2、正方体的特征:四四方方的,有6个平平的面,面的大小一样。
如图:
3、圆柱的特征:直直的,上下一样粗,上下两个圆面大小一样。放在桌子上能滚动。立在桌子上不能滚动。
如图:
4、球的特征:圆圆的,很光滑,它的表面是曲面。放在桌子上能向任意方向滚动。
5、立体图形的拼摆:用长方体或正方体能拼组出不同形状的立体图形,在拼好的立体图形中,有一些部位从一个角度是看不到的,要从多个角度去观察。用小圆柱可以拼成更大的圆柱。
6-10的认识和加减法
一、6—10的认识:
1、数数:根据物体的个数,可以用6—10各数来表示。数数时,从前往后数也就是从小往大数。
2、10以内数的顺序:
(1)从前往后数:0、1、2、3、4、5、6、7、8、9、10。
(2)从后往前数:10、9、8、7、6、5、4、3、2、1、0。
3、比较大小:按照数的顺序,后面的数总是比前面的数大。
4、序数含义:用来表示物体的次序,即第几个。
5、数的组成:一个数(0、1除外)可以由两个比它小的数组成。如:10由9和1组成。
记忆数的组成时,可由一组数想到调换位置的另一组。
二、6—10的加减法
1、10以内加减法的'计算方法:根据数的组成来计算。
2、一图四式:根据一副图的思考角度不同,可写出两道加法算式和两道减法算式。
3、“大括号”下面有问号是求把两部分合在一起,用加法计算。“大括号”上面的一侧有问号是求从总数中去掉一部分,还剩多少,用减法计算。
三、连加连减
1、连加的计算方法:计算连加时,按从左到右的顺序进行,先算前两个数的和,再与第三个数相加。
2、连减的计算方法:计算连减时,按从左到右的顺序进行,先算前两个数的差,再用所得的数减去第三个数。
四、加减混合
加减混合的计算方法:计算时,按从左到右的顺序进行,先把前两个数相加(或相减),再用得数与第三个数相减(或相加)。
11-20各数的认识
1、数数:根据物体的个数,可以用11—20各数来表示。
2、数的顺序:11—20各数的顺序是:11、12、13、14、15、16、17、18、19、20、
3、比较大小:可以根据数的顺序比较,后面的数总比前面的数大,或者利用数的组成进行比较。
4、11—20各数的组成:都是由1个十和几个一组成的,20由2个十组成的。如:1个十和5个一组成15。
5、数位:从右边起第一位是个位,第二位是十位。
6、11—20各数的读法:从高位读起,十位上是几就读几十,个位上是几就读几。20的读法,20读作:二十。
7、写数:写数时,对照数位写,有1个十就在十位上写1,有2个十就在十位上写2.有几个一,就在个位上写几,个位上一个单位也没有,就写0占位。
8、十加几、十几加几与相应的减法
(1)、10加几和相应的减法的计算方法:10加几得十几,十几减几得十,十几减十得几。
如:10+5=1517-7=1018-10=8
(2)、十几加几和相应的减法的计算方法:计算十几加几和相应的减法时,可以利用数的组成来计算,也可以把个位上的数相加或相减,再加整十数。
(3)、加减法的各部分名称:
在加法算式中,加号前面和后面的数叫加数,等号后面的数叫和。
在减法算式中,减号前面的数叫被减数,减号后面的数叫减数,等号后面的数叫差。
9、解决问题
求两个数之间有几个数,可以用数数法,也可以用画图法。还可以用计算法(用大数减小数再减1的方法来计算)。
认识钟表
1、认识钟面
钟面:钟面上有12个数,有时针和分针。
分针:钟面上又细又长的指针叫分针。
时针:钟面上又粗又短的指针叫时针。
2、钟表的种类:日常生活中的钟表一般分两种,一种:挂钟,钟面上有12个数,分针和时针。另一种:电子表,表面上有两个点“:”,“:”的左边和右边都有数。
3、认识整时:分针指向12,时针指向几就是几时;电子表上,“:”的右边是“00”时表示整时,“:”的左边是几就是几时。
4、整时的写法:整时的写法有两种:写成几时或电子表数字的形式。如:8时或8:00
20以内的进位加法
1、9加几计算方法:计算9加几的进位加法,可以采用“点数”“接着数”“凑十法”等方法进行计算,其中“凑十法”比较简便。
利用“凑十法”计算9加几时,把9凑成10需要1,就把较小数拆成1和几,10加几就得十几。
2、8、7、6加几的计算方法:(1)点数;(2)接着数;(3)凑十法。可以“拆大数、凑小数”,也可以“拆小数、凑大数”。
3、5、4、3、2加几的计算方法:(1)“拆大数、凑小数”。(2)“拆小数、凑大数”。
4、解决问题
(1)解决问题时,可以从不同的角度观察、分析、从而找到不同的解题方法。
(2)求总数的实际问题,用加法计算。
1.抛物线是轴对称图形。对称轴为直线x=—b/2a。
对称轴与抛物线的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P(—b/2a,(4ac—b’2)/4a)
当—b/2a=0时,P在y轴上;当Δ=b’2—4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的.位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ=b’2—4ac>0时,抛物线与x轴有2个交点。
Δ=b’2—4ac=0时,抛物线与x轴有1个交点。
Δ=b’2—4ac
7.定义:
x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
8.范围:
倾斜角的取值范围是0°≤α
9.理解:
(1)注意“两个方向”:直线向上的方向、x轴的正方向;
(2)规定当直线和x轴平行或重合时,它的倾斜角为0度。
10.意义:
①直线的倾斜角,体现了直线对x轴正向的倾斜程度;
②在平面直角坐标系中,每一条直线都有一个确定的倾斜角;
③倾斜角相同,未必表示同一条直线。
11.公式:
k=tanα
k>0时α∈(0°,90°)
k
k=0时α=0°
当α=90°时k不存在
ax+by+c=0(a≠0)倾斜角为A,则tanA=—a/b,A=arctan(—a/b)
当a≠0时,倾斜角为90度,即与X轴垂直
1、加法
(1)两个数相加,保持得数不变:如果相加的这两个数有一个增大了,则另一个数就要减小,且一个数增大了多少,另一个数就要减少多少。
(2)两个数相加,其中的一个数不变,如果另一个数变化则得数也会发生变化,且加数变化了多少,结果就变化多少。
(3)两个数相加,交换它们的'位置,得数不变。
2、减法
(1)一个数减去另一个数,保持减数不变:如果被减数增大,结果也增大且被减数增大多少,结果就增大多少;被减数减小,则结果也减小,且被减数减小多少,结果也减小多少。
(2)一个数减另一个数,保持被减数不变:如果减数增大,结果就减小,且减数增大了多少,结果就减小多少;如果减数减小,则结果增大,且减数减小了多少,结果就增大多少。
(3)一个数减另一个数,保持的数不变:被减数增大多少,减数就要增大多少;被减数减小多少,减数也要减小多少。
1.掌握20以内进位加法的计算方法---“凑十法”“凑小数,拆大数”
将小数凑成10,然后再计算。如:3+9(3+7=10,9可以分成7和2,10+2=12)
“凑大数,拆小数”,将大数凑成10,然后再计算。
如:8+7(8+2=10,7可以分成2和5,10+5=15)
注意:孩子喜欢和熟悉的方法才是最佳方法而且只掌握一种就可以了。
2.20以内不进位加法和不退位减法:
11+6(个位相加,1+6=7)
11+6=1715-3(个位上够减,5-3=2)
15-3=12
3、加强进位和不进位、及不退位的训练。
4、看图列式解题时候,要利用图中已知条件正确列式。
常用的关系有:
(1)部分数+部分数=总数
(2)总数-部分数=另一个部分数
(3)大数-小数=相差数(谁比谁多几,或谁比谁少几)
(4)原有-借出=剩下(用了多少,求还剩多少时用)
(一)、有趣的“0”“一年级0”可以表示没有,“0”可以参加计算,“0”在数中起到占位作用,“0”可以表示起点,表示0度。
(二)、基数与序数表示物体的多少时,用的是基数;表示物体排列的次序时,用的是序数。基数与序数不同,基数表示物体的多少,序数表示物体的排列次序。
(一)、数简单图形数零乱放置的物体或数某一类图形的个数时,应先将所有物体依次标上序号,可以按照序号,顺序观察,数准指定的图形。注意对于同一个物体,从不同的角度去观察,观察的结果也会不同。因此在数简单图形时,要善于从不同的角度观察问题、分析问题。
(二)、数复杂图形数复杂图形时可以按大小分类来数。
(三)、数数按条件的要求去数。
比一比当比较的2个对象整齐的排列时,很容易采用连线比的方法比较出谁多谁少。如果比较的2个对象是杂乱排列的,可以通过数数目的方法进行比较。也可以采用分段比的方法。
(一)、摆一摆要善于寻找不同的方法。
(二)、移一移
(一)、图形变化的规律观察图形的变化,可以从图形的形状、位置、方向、数量、大小、颜色等方面入手,从中寻找规律。
(二)、数列的规律数列就是按一定规律排成的一列数。怎样寻找已知数列的规律,并按规律填出指定的某个数是解题的关键。
(三)、数表的规律把一些数按照一定的规律,填在一个图形固定的位置上,再把按照这一规律填出的图形排列起来。从给出的图形中寻找规律,按照规律填图是解题的关键。
(一)、填数字给出的算式是一组,不同算式中相同图形中所填的数字是相同的。在做这些题时,不要为只填出一个答案而满足,应找出所有的答案。如果不必要一一列出时,应给以说明,这才是完整、正确的.解答。
(二)、填符号比较2个数的大小,首先要比较2个数的位数,位数多的数大;其次,当2个数的位数相同时,从高位比起,相同数位上的数大的那个数就大。当2个数各个相同数位上的数都分别相同时,这2个数相等。
(1)同一个数分别加上(或减去)1个相等的数,所得的结果相等;
(2)同一个数分别加上2个不同的数,所加的哪个数大,那个算式的结果就大;
(3)同一个数分别减去2个不同的数,所减的哪个数小,那个算式的结果就大;
(4)2个不同的数减去同一个数,哪个被减数大,那个算式的结果就大。七、说道理做数学题,每一步都要有理由,要把道理想清楚,说出来。
应用题一道简单的应用题,是由已知条件和所求问题组成的。一般先说题意,再列算式。
问题
奇+奇=偶奇×奇=奇
奇+偶=奇奇×偶=偶
偶+偶=偶偶×偶=偶
形如:abc=100a+10b+c
整除数特征
2末尾是0、2、4、6、8
3各数位上数字的和是3的倍数
5末尾是0或5
9各数位上数字的和是9的倍数
11奇数位上数字的和与偶数位上数字的和,两者之差是11的倍数
4和25末两位数是4(或25)的倍数
8和125末三位数是8(或125)的倍数
7、11、13末三位数与前几位数的差是7(或11或13)的`倍数
①如果c|a、c|b,那么c|(ab)。
②如果bc|a,那么b|a,c|a。
③如果b|a,c|a,且(b,c)=1,那么bc|a。
④如果c|b,b|a,那么c|a.
⑤a个连续自然数中必恰有一个数能被a整除。
一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r
当r=0时,我们称a能被b整除。
当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商)。用带余数除式又可以表示为a÷b=q……r,0≤r
1、认钟表,时和分,先看时针几时过,再看分针数小格,几时几分合一起,快快说出时间来。
2、寻找图形的变化规律,可从形状、颜色、个数的增减等方面去思考。
3、数列之间有规律,观察相邻数变化,通过计算找规律,后面数据很明了。
4、统计数据有方法,一个一个来点数,边数边来做记号,数出数量填图表。
5、两位数加减一位数、整十数,小朋友请注意,数字符号须看清,相同数位才加、减。
6、大面额的人民币换成小面额的人民币,用数得组成来思考,想打面额的`人民币里面有几个小面额的人民币的数。
7、最小的两位数是10,地两位数是99。
8、一个两位数,位是十位,一个三位数,位是百位。
9、求一个加数,用和减另一个加数。求被减数,用差加减数。
10、两数比多少,求相差数用减法,求大数用加法,求小数用减法。
11、三数相加、减,凑十能简便,如果能凑十,先把它来算。两位数加一位数,先看清个位数,判断进位不进位,再确定十位数。
12、写数也从高位起,哪位是几就写几。除开位,哪位一个也没有,就写零来占占位。
13、两数比大小,先看位数来比较,位数多来数就大,位数相同从高位比。
14、数字宝宝真奇妙,位数不同意不同,几在十位是几十,几在个位是几个。
15、相近两数比多少,可用大数比小数多一些,小数比大数少一些来描述。
一、图形可分为:(1)平面图形;(2)立体图形
1. 平面图形:正方形、长方形、三角形、圆、平行四边形
2. 立体图形: 长方体、正方体、圆柱、球
二、图形的拼组
1.两个完全一样的三角形可拼成一个平行四边形;两个完全一样的三角形既可以拼成一个平行四边形,也可以拼成一个长方形,还可以拼成一个大三角形。
2.拼成一个大正方形至少需要4个小正方形,拼成一个大正方体至少需要8个小正方体。
3. 两个长方形能拼成一个大的长方形。(两个特殊的'长方形能拼成一个大正方形)
4个长方体能拼成一个大的长方体。
1读20以内的数顺数:从小到大的顺序01234567891011121314151617181920
倒数:从大到小的顺序20191817······
单数:1、3、5、7、9······
双数:2、4、6、8、10······
(注:0既不是单数,也不是双数,0是偶数。在生活中说单双数,在数学中说奇偶数。)
2两位数(1)我们生活中经常遇到十个物体为一个整体的情况,实际上十个“1”就是一个“10”,一个“10”就是十个“1”。
如:A:11里有(1)个十和(1)个一;
11里有(11)个一。
12里
12里有(12)个一13里有(1)个十和(3)个一;
13里有(13)个一14里有(1)个十和(4)个一;
14里有(14)个一15里有(1)个十和(5)个一;
15里有(15)个一······
19里有(1)个十和(9)个一;
或者说,19里有(19)个一20里有(2)个十;
20里有(20)个一B:看数字卡片(11~20),说出卡片上的数是由几个十和几个一组成的。
(2)在计数器上,从右边起第一位是什么位?(个位)第2位是什么位?(十位)个位上的1颗珠子表示什么?(表示1个一)十位上的1颗珠子表示什么?(表示1个十)
(3)先读11、12、13、14、15、16、17、18、19、20,再写出来。
如:14,读作:十四,写作:14。个位上是4,表示4个一,十位上数字是1,表示1个十。
1、给数字娃娃排队
5、6、10、3、20、17,可以按从大到小的顺序排列,也可以按从小到大的顺序排列。
(注意做题时,写一个数字,划去一个,做到不重不漏。)
2、任意取20以内的'两个数,能够用谁比谁大或谁比谁小说一句话。
如:16比15大,写出来就是16>159比13小,写出来就是9<13
3、“比”字的用法
看“比”字的后面是谁,比几大1就要在几的基础上加1,比几小1就要在几的基础上减1。
如:比5小2的数是(3),比4多3的数是(7)。
△▲▲★△☆☆△△△▲★★★☆★
观察图,说说有几个图形?(16个图形)从左数第几位是什么?从右数第几位是什么?把左边三个圈起来;把右边第2个圈起来。
(复习此类知识时,分清左右,同时确定方向;知道几个和第几个的区别。)
2的前面是1,2的后面是3,2再添上1就是3,3再去掉1就是2,与2相邻的数是1和3。
3的前面是2,3的后面是4,3再添上1就是4,4再去掉1就是3,与3相邻的数是2和4。
20的前面是19,20的后面是21,与20相邻的数是19和21。
1.两个事物的对比
比较两个事物的大小、多少、长短、高矮、轻重等,要以其中的一个事物作为参照,或者说以其中的一个事物作为标准,然后再比较,这样就能说另一个事物比作为标准的那个事物大或者小、多或少等。
比长短:常用的方法注意要一端对齐,也可以采用数格比较,或对称比较。
比高矮:注意在同一平面上去比较。
比多少:运用一一对应原则。
2.三个事物比较
可以先两个两个的比较。然后根据比较的结果,得出三个事物比较的结论。
如:A比B重,B比C重,那么可以得到A比C重。A最重,C最轻。
A比B重,A比C重,只能得到A最重,还要比较B和C,才知道谁最轻。
1、勤动手。学习数学不能光用脑子想想就可以的,学数学一定要勤动手,有很多时候,没有想明白,但用手去写一写,说不定就做出来了。
2、作业很重要。学习数学的`一个重要方法就是要完成老师布置得作业,如果只是上课听讲,那是远远不够的,在完成老师布置作业的同时,还要多做课后习题进行巩固。
3、上课预习,下课复习。学习数学的很重要一点便是,上课之前做好预习,这样才能在听课的过程中重点听自己预习时不太懂的知识点,下课要及时复习,上课时听得没有经过巩固很容易忘记。
4、总结错题库。学习数学的时候,可以用一个本子来记录自己所做错的题目,每隔3天左右,再回头进行做一遍,有些错题,当时可能会做了,但过几天有可能就会再次忘记。